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LETTER TO THE EDITOR 

On a reduction and solutions of non-linear wave equations with 
broken symmetry 

W I Fushchich and I M Tsifra 
Mathematical Institute, Academy of Sciences of the Ukrainian SSR, Repin Street, Kiev-4, 
USSR 

Received 28 July 1986 

Abstract. A generalised definition for invariance of partial differential equations is pro- 
posed. Exact solutions of the equations with broken symmetry are obtained. 

Let us consider the non-linear wave equation 

U + F, ( U )  = 0 U = 4 x 0 ,  XI 1 x2, x3) 

where F,(u) is an arbitrary smooth function. The ansatz 

U = f ( x ) c p ( w ) + g ( x )  

p = 0, 1 ,2 ,3  

suggested by Fushchich (1981) was used to construct the family of exact solutions of 
equations (1). f ( x ) ,  g ( x )  are given functions, cp(w) is the function to be determined 
and w = ( w , ,  w 2 ,  w 3 )  are new invariant variables. Wide classes of exact solutions of 
equation (1) have been constructed by Fushchich and Serov (1983a, b), Fushchich er 
a1 (1985) and Fushchich and Shtelen (1983). It is important to note that Poincart 
invariance of equation (1) was used. 

The possibility of using an ansatz of type (2) to find exact solutions of the non-linear 
wave equations with broken symmetry naturally arises in connection with the fact that 
many equations of theoretical physics are not invariant with respect to the PoincarC, 
Galilei and Euclidean groups. A more specific formulation of this problem is as follows: 
are we able to construct the solutions of wave equations not invariant with respect to 
the Lorentz group, for example, but nevertheless with the help of the Lorentz-invariant 
ansatz? 

The present letter suggests an affirmative answer to this question; i.e. we construct 
the many-dimensional non-linear wave equations with broken symmetry. The multi- 
parametrical exact solutions of these equations are found with the help of ansatz (2), 
previously used to find exact solutions of PoincarC- and Galilei-invariant equations 
only. It is obvious that ansatz (2) cannot be applied to the equations with arbitrary 
breakdown of symmetry, which is why the equation with the breakdown of symmetry 
should have some hidden symmetry. The set of equations with such symmetry was 
considered by Fushchich and Nikitin (1983). We do not deal with the symmetry of all 
the solutions of the equation but only with a definite subset of solutions, which may 
be much wider than the symmetry of the equation itself. This idea will be used below. 
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Let us consider the wave equation with broken symmetry 

Lu = Cl U + F (  x, y, U )  = 0 (3 )  

where F(x, r, U )  is an arbitrary smooth function, depending on x = (xo, x, ,  x2, x3), 
y = au/ax = (au/axo, au/dx,, au/ax2, aulax,). Following Fushchich (1979) we 
generalise the Lie definition of invariance of equation (3). 

Dejnition. We shall say that equation (3) is invariant with respect to some set of 
operators 0 = {QA} ,  A = 1,2,  . . . , N, a number of linearly independent operators, if 
the following condition is fulfilled: 

where { Q A u }  = 0 is a set of equations 

QAu = 0, D Q ~ U  = 0, D ~ Q ~ u  = 0,. . . , D ~ Q ~ u  = o ( 5 )  

where D is an operator of total differentiation. Condition (4) is a necessary condition 
for reduction of differential equations. 

Definition (4) is a generalisation of the Lie definition (see, e.g., Ovsyannikov (1978) 

Q A ~ ~ ~ L u = o =  o ( 6 )  

where QA are a number of first-order differential operators forming a Lie algebra. 

(3) we choose the function F in a form 
To demonstrate the efficacy of definition (4) and to find exact solutions of equation 

F = - (2) 2( E) + (2) (E) + ($) (E) * + (2) (E) (7 ) 

where A,, are arbitrary parameters and x, # 0. 

Theorem. The maximal local (in the Lie sense) invariance group of equations (3) and 
(7) is the two-parametrical group of the transformations 

and 
(8) x: = eax, U ’  = e2au 

u ’ = u + c  c = constant 

where a is real parameter. 

The proof of the theorem is reduced to application of the well known Lie algorithm 
and we do not present it here. One can make sure that non-linearity breaks the 
rotational and translational symmetry. 

Now we show that the Lorentz-non-invariant equations (3) and (7) are reduced to 
an ordinary differential equation with the help of the Lorentz-invariant ansatz 

(9) 
2 2 2 2  U = d o )  w = x , , x ~ = x o - x , - x 2 - x 3 .  

Substituting (9) into (3)  and (7)  we obtain the ordinary differential equation 
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Solving equation ( l o ) ,  we obtain 
cp(w) = 2(-A2)-’ /2  tan-’ [w(-A’)-’ / ’]  - A 2 >  0 

cp(w)= -(A’)-l”ln( (A 2 ) 1 / 2 +  w ) - 
( A 2 ) ’ / 2  - w 

Thus the Lorentz-non-invariant (in the Lie sense) equations ( 3 )  and ( 7 )  are reduced 
to an ordinary differential equation. 

Formulae (11)  and (12 )  give a Lorentz-invariant family of solutions of equations 
(3) and (7). It means that the following set of conditions is fulfilled: 

J, ,u(x)  = 0 p, v = O , 1 , 2 , 3  (13)  

J,,, = x,a/ax,  + x,a/axo Jab = x,a/axb - xa/  bax, a, b = 1 , 2 , 3  (14)  

for the set of solutions ( 1  1) and (12) .  
The operators (14)  generate Lorentz transformations. Equations (13)  are the con- 

crete realisation of the first equation of (5). In this case the index A varies from 1 to 
6. 

Thus, equations (13)  pick out a Lorentz-invariant subset of the set of all solutions 
of equations (3 )  and (7). In other words, equations ( 3 )  and (7)  are Lorentz-invariant 
in the sense of definition (4). 

Now let us consider the equation 

a 2 u / a t 2  = A A U ( V U ) ’  A = 1 /3m2.  (15 )  
It is simple to verify that equation (15)  is not invariant with respect to Galilean 
transformations, generated by operators 

G, = ta /ax ,  + mx, a = 1 , 2 , 3 .  (16)  
In this case equations { d A u }  = 0 are 

G,u = t a u / a x ,  - mx,u = 0 

( a l a r ) (  G , u )  = 0. (18)  
Thus equation (15)  is invariant under transformations generated by the operators (16 )  
in the sense of definition (4) .  It means that the subset of solutions of equations (15)  
picked out by means of conditions (17)  and (18)  is invariant under Galilean transforma- 
tions while equation (15)  is not invariant under these transformations. 

The Galilean-invariant ansatz has the form 

U = c p ( t ) +  m ( x : + x : + x : ) / 2 t  w = t  f = 1 .  (19)  
Substituting (19)  into (15) ,  we obtain 

d2cp/dt2 = 0-  u = m ( x :  + x i  + x : ) / 2 t  + At + C 

where A and C are arbitrary constants. 

differential equations. 

~ , a ~ r C , + g [ 2 ~ ( x , a ~ ) r C , - ( ~ ~ / c , x ~ ) i ( ~ , a ~ ) ~ ] ~ - ~ ( x ) ( ~ r C , ) ’ ~ ~ r C ,  = O  

A generalised definition of the invariance ( 4 )  can be applied to the system of partial 

Let us consider, for example, a non-linear Dirac system of equations: 

M ( x )  = 2(c,x~)- ’~sp”c~frC,+ $4 
S p v  = ai(r,r” - YYY,) 

where g, P r ,  c, are arbitrary parameters. 
p , v , a = O , 1 , 2 , 3  
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Equation (21) is not invariant under conformal transformations. Nevertheless, it 
is reduced to the system of ordinary differential equations 

iy,,p’”dq/dw + g ( ~ j q ) ” ~ q  = O  (22) 

with the help of the conformally invariant ansatz (4) 

+ ( X I  = [ r , , x ” / ( x 2 ) 2 1 d w )  w = PrX’I/X2 P 2 # 0  x2 = xPx” # 0 (23) 

where ~ ( w )  is the four-component spinor depending on a variable w. The general 
solution of equation (22) is the vector function 

(P = exp[ - i ( r,P ’”) / P 1 g ( i x  1 ’ ’ w lx (24) 

Equation (21) is invariant under the transformations generated by the operator 

(25) 

where ,y is a constant spinor. 

c,,K Ir on a set of solutions of the equations 

c,, K ’” + = 0 

c’K, = 2( C X ) ( X ~ )  - x2( cd) + 2( CX) - ( YC)( YX). 

In conclusion we note that an idea like the one set forward here was used by 
Bluman and Cole (1969), Ames (1972), Fokas (1979) and Olver and Rosenau (1986), 
as was kindly indicated by the referee. 

We are grateful to the referee for his valuable remarks. 
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